DEVELOPMENT OF AN ARTIFICIAL INTELLIGENCE BASED SAFETY NET FOR PANCREATIC CYST SURVEILLANCE

Beth Israel Lahey Health

Beth Israel Deaconess Medical Center

Duncan J. Flynn^{1*}, Brian Li^{1*}, Heather Hardway², Abraham Bezuidenhout³, Leo Tsai³, Mandeep Sawhney^{1^}, Arvind Ravi^{2^}, and Joseph D. Feuerstein^{1^}

1. Beth Israel Deaconess Medical Center, Division of Gastroenterology, Boston, MA
2. Halo Solutions, Cambridge MA

3. Beth Israel Deaconess Medical Center, Radiology Department, Boston, MA

Background

- Pancreatic cysts are common incidental findings on imaging that often require further workup
- The incidence of both pancreatic cysts and pancreatic cancer are increasing
- Variability in clinical guidelines as well as institutional and individual practices can result in inconsistent surveillance and loss to follow up
- We used natural language processing with a large language model to build a pancreatic cyst safety net

Methods

- All abdominal CT and MRI reports (including MRCP from 2022 were included
- Pancreatic cyst patients were identified by a first pass detection by searching for "cyst" (in the pancreas findings), "IPMN", or "MRCP"
- A natural language processing workflow with a large language model (LLM; Claude API endpoint for Sonnet 3.5) was built
- The radiology reports were assessed for relevant findings including cyst size, number, location, and components of risk stratification (solid components, pancreatic ductal dilation, wall thickening)
- Demographic and clinical information were merged with this data
- Compliance with report recommendations was assessed using a cutoff date of 4/1/2024

Results

- 2593 reports were identified using the search criteria and processed by the large language model
- Parallel assessment of 50 cases revealed no clinically meaningful inconsistencies with the output of the safety net
- 741 patients (29%) had suggested recall for their cysts
- Of 345 patients evaluable for evaluable for compliance assessment (i.e. whose recall date preceded our data cutoff), 71 completed imaging within the recommended interval, for an overall compliance of 21%.
- Features significantly associated with increased compliance included having a concurrent recommendation for EUS/FNA (p = 0.007) and a higher cyst growth rate (p = 0.04).

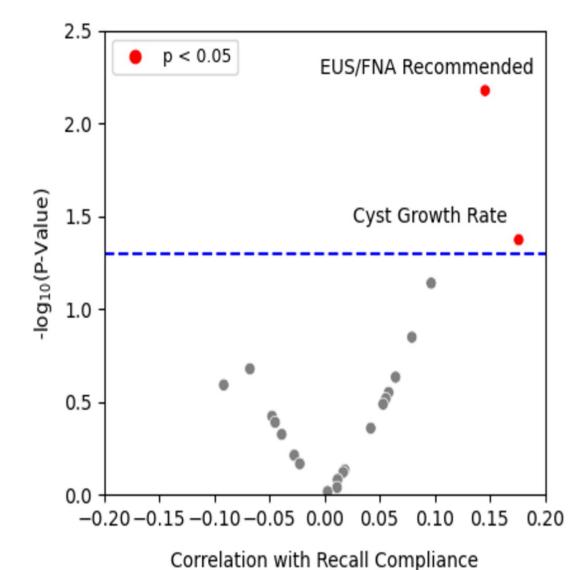


Figure 1. Association between pancreatic cyst report features and compliance for the large language model-based pancreatic cyst safety net. Recommendation for EUS/FNA and higher cyst growth rates were associated with increased compliance.

Conclusion

- We designed an artificial intelligence based safety net to capture pancreatic cyst surveillance recommendations
- There was overall low compliance with clinical guidelines (21%)
- Recommendation for EUS/FNA or higher cyst growth rates were associated with increased compliance with recommendations
- Large language models and artificial intelligence can be used to generate institution-wide pancreatic cyst safety nets that are reliable and quickly updated
- Similar models could be applied to other pathology and surveillance guidelines to allow for more consistent practice and fewer patients lost to follow up

Acknowledgements

The natural language processing workflow with a large language model was built in partnership with Halo Solutions.

Funding: CRICO Patient Safety Grant; "A Pancreatic Cyst Surveillance Program for Cancer Risk Reduction

Reference:

Patel VR, Adamson AS, Liu JB, et al. Increasing incidence and stable mortality of pancreatic cancer in young Americans. *Annals of Internal Medicine* 2024.

Contact Information

Duncan J. Flynn, MD Fellow in Gastroenterology and Hepatology, PGY-6 Beth Israel Deaconess Medical Center dflynn7@bidmc.harvard.edu